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Inelastic neutron scattering was used to determine the spin Hamiltonian for the singlet ground-state system
of fully deuterated BPCB, �C5D12N�2CuBr4. A two-leg spin-1/2 ladder model, with J�= �1.09�0.01� meV
and J� = �0.296�0.005� meV, accurately describes the data. The experimental limit on the effective interladder
exchange constant is �Jint

eff��0.006 meV, and the limit on total diagonal, intraladder exchange is �JF+JF��
�0.1 meV. Including the effects of copper to bromide covalent spin transfer on the magnetic form factor, the
experimental ratios of intraladder bond energies are consistent with the predictions of continuous unitary
transformation.
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I. INTRODUCTION

Low-dimensional quantum magnets, with integer spin per
unit cell, frequently exhibit a macroscopic singlet ground
state. While impervious to weak fields, there is a critical field
beyond which an extended critical phase can exist, and it is
of considerable interest to explore the spin dynamics at the
quantum critical point and within the putative critical phase.

The n-leg antiferromagnetic �AFM� spin ladder consists
of n parallel chains of magnetic moments with AFM ex-
change interactions along the chains �J�� and between neigh-
boring chains �J��. In keeping with the Lieb-Schultz-Mattis
theorem,1,2 the excitation spectrum has a gap for n even and
is gapless for n odd.3–5 The n=2, S=1 /2 case is of particular
interest because such ladders may form dynamically in cop-
per oxide superconductors and play a role in suppressing
magnetism in favor of superconductivity. The Hamiltonian
for the simple two-leg spin ladder is given by the first two
terms in

H = J� �
j,l=1,2

S j,l · S j+1,l + J��
j

S j,1 · S j,2 + JF�
j

S j,1 · S j+1,2

+ JF��
j

S j,1 · S j−1,2 + J� �
j,m,n

S j,m · S j,n

+ J� �
j,m,n

S j,m · S j+1,n − g�BH �
j,l=1,2

S j,l, �1�

where l=1,2 indexes each of the two chains and j is the rung
index. However, for BPCB �see Fig. 1�a�� additional interac-
tions are possible. The third and fourth terms are frustrating
diagonal intraladder exchange interactions, JF and JF�, be-
tween spins in neighboring chains and rungs. The next two
terms describe two possible interladder interactions, J� and
J�, where m and n denote adjacent chains in different
ladders. We define Jint

eff=J�−J� to discuss the effective
interaction between adjacent ladders. The last term in the

Hamiltonian is the Zeeman term associated with an applied
magnetic field, H. It is included here in anticipation of future
high field experiments, but for this work, H=0.

Consider the ideal one-dimensional �1D� system �J� ,J�
=0�. If J� =0 and one of the frustrating exchanges is zero, H
describes an alternating spin chain, with the physics con-
trolled by �=JF /J�. Another extreme, JF=JF�=0, is the
ideal spin ladder, where the physics is controlled by �
=J� /J�. In the limit ���→�, the system is composed of de-
coupled 1D chains with a gapless spectrum.7–11 Any finite J�

produces an isolated singlet ground state with a gap �
��J�� /2 �see Ref. 5�. This general state of affairs persists
into the strong coupling limit, ���	1, where the ground state
is a singlet, separated from the lowest lying triplet of excited
states by an energy gap ��J�−J�.12,13

Given the extensive theoretical and numerical treatments
that Eq. �1� has received,14 it is of great interest to identify
materials containing spin-1/2 ladders that can be driven to
quantum criticality through the application of a magnetic
field. Excluding the system described in this paper, spin-
ladder materials known thus far either have energy scales
that are too large to be affected by an applied field15 or have
significant interladder interactions that induce Néel order
above the critical field.16 Diagonal16,17 and cyclic18 ex-
changes, along with the possible coexistence with other mag-
netic systems,18–21 represent additional challenges that are of
interest in their own right but that may complicate analysis
of the quantum critical phenomena.

Here we report experimental evidence that fully deuter-
ated BPCB, �C5D12N�2CuBr4, is a nearly ideal realization of
an assembly of noninteracting spin-1/2 ladders. We provide
an accurate determination of the relevant exchange constants,
and quantify the low temperature exchange bond energies, in
the absence of any applied magnetic field. These values can
be used for describing the field induced quantum critical
state in other experiments.
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II. EXPERIMENTAL DETAILS

We used inelastic neutron scattering to probe magnetic
excitations in fully deuterated bis�piperidinium�tetrabro-
mocuprate�II�, commonly referred to as BPCB,
�C5D12N�2CuBr4. BPCB is monoclinic �space group P21 /c�,
with room-temperature lattice parameters a=8.49 Å, b
=17.22 Å, c=12.38 Å, and �=99.3°.6 Throughout we shall
denote wave-vector transfer in the corresponding reciprocal
lattice q�hkl�=ha�+kb�+ lc�. The Cu2+ ions form ladders, as
shown in Fig. 1. The legs of the ladders run along a, and the
rungs are nearly along c�, with a small tilt of 24° above the
a-c plane.6,22

High field-magnetization measurements �0 T
H

30 T� were performed by Watson et al.,22 revealing a
lower critical field of Hc1=6.6 T, an upper critical field of

Hc2=14.6 T, and an inflection point at half the saturation
magnetization. Through careful comparison of bulk thermo-
magnetic data to various models, BPCB was identified as a
two-leg spin ladder in the strong coupling limit with J� /kB
=13.3 K �1.15 meV� and J� /kB=3.8 K �0.33 meV�. The
analysis indicated that BPCB possesses an isolated singlet
ground state for H
Hc1 and forms a gapless Luttinger spin
liquid for Hc1
H
Hc2.

Inelastic neutron scattering is a sensitive probe of atomic
scale correlations and interactions in singlet ground-state
systems. Using this technique, we find that BPCB is highly
one dimensional ��Jint

eff /J���5�10−3�, making it an excellent
candidate for future exploration of the high field critical
phase. The findings extend, and are consistent with, previous
experimental results on the spin Hamiltonian for BPCB.

Using 99.9% deuterated starting materials, the sample
used for our neutron scattering measurements was made by
the same process and team of scientists as described in Ref.
22. The sample consists of five deuterated single crystals,
with a total mass of 3 g and coaligned within one degree, for
scattering in the �h0l� reciprocal lattice plane. The measure-
ments were performed at the NIST Center for Neutron Re-
search using the time-of-flight Disk Chopper Spectrometer
�DCS�.23 The chopper cascade was phased to provide an in-
cident wavelength �=5 Å and energy resolution �E
	0.1 meV. The sample was cooled in a liquid helium cry-
ostat to T= �1.4�0.1� K. The nonmagnetic background was
measured at T=25 K, where magnetic scattering is widely
distributed in energy and momentum. To a good approxima-
tion, the high temperature scattering can be treated as inde-
pendent of sample orientation. This background measure-
ment was subtracted from the 1.4 K data.24 The DAVE

software package was used to perform the initial analysis, to
compute the energy resolution, and to extract the data re-
quired for advanced processing.25

An example of raw data measured with the c� axis parallel
to ki is shown in Fig. 2�a�. An integration over the k and l
directions is performed to generate this figure. Such a proce-
dure is commonly used for analyzing data acquired on low-
dimensional systems using chopper spectrometers.26 How-
ever, we will use our measurements to quantify interladder
exchange. For this purpose, all components of momentum
transfer in the horizontal scattering plane were used in the
subsequent analysis. The trajectories in the �h ,0 , l� plane are
shown in Fig. 3 for energy transfers of 0.8 and 1.5 meV, and
for all sample orientations used �

 �ki, c�=0°, −10°, and
+60.9°�. The trajectories sample the �h ,0 , l� plane suffi-
ciently to test for the presence of interladder dispersion.

III. ANALYSIS AND DISCUSSION

A. Exchange paths

As a first step toward a model spin Hamiltonian, we shall
discuss the structure and chemical bonding in BPCB. A re-
view of the magnetic exchange interactions in a wide range
of tetrabromocuprates27 provided guidance on possible ex-
change paths. While these considerations are not rigorous,
they can provide a reference against which to compare the
experimental results. It was proposed6,22 that the rung inter-

FIG. 1. �Color online� Various projections of the previously de-
termined structure of BPCB �Ref. 6�. �a� Exchange interactions en-
tering the Hamiltonian in Eq. �1�. Black lines indicate the legs and
rungs of the ladder. ��b�–�d�� BPCB crystal structure, except hydro-
gen, projected along each of the crystallographic axes.
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action �J�� is associated with overlap of Br− adjacent to
copper sites, while the exchange interactions along the legs
of the ladder �J�� are mediated by a combination of hydrogen
bonds and nonoverlapping Br− orbitals, and therefore should
be weaker. However, Fig. 1 shows that the Br-Br distances
associated with interchain and intrachain interactions are in
fact quite similar. Furthermore, these distances are 4–5 Å,
which is more than twice the covalent radius of bromine.
This observation indicates that magnetic interactions in
BPCB are mediated by intervening hydrogen, as becomes

increasingly clear when piperidinium radicals are included in
the picture, Figs. 1�b�–1�d�. Excess hydrogen is located
around the nitrogen sites in the piperidinium rings, and these
are found aligned with the nearest approach of bromine at-
oms, associated with neighboring Cu2+ ions. Two piperi-
dinium groups are involved in producing J�, and only one
for J�. The greater number of Br-H bridges for rung over leg
interactions leads to an expectation of dominant rung ex-
change.

Any frustrating diagonal interaction �JF or JF�� would in-
volve traversing the piperidinium molecule. Note that a large
�JF��J� and JF�=0 would result in an alternating chain, as
opposed to a ladder. This situation is found, for example, in
MCCL.28 Furthermore, JF and JF� being associated with dif-
ferent bond lengths of 8.96 and 12.64 Å, respectively, sug-
gests JF dominates.

The strongest interladder interaction, J�, is expected be-
tween ladders separated by c, and it is mediated by hydrogen
bonding through the same piperidinium molecule involved in
the leg exchange. In addition, a J� interladder exchange in-
teraction is possible between atoms in ladders separated by
c+a. In conjunction with J�, a finite J� interaction might
produce frustration, giving a small Jint

eff, and reduce interlad-
der dispersion. Any interladder exchange in the b direction
would involve a longer path, through two piperidinium mol-
ecules, and is therefore expected to be weak.

B. Global fitting based on single-mode approximation

The single-mode approximation29 generally provides an
excellent description of the dynamic spin-correlation func-
tion for gapped quantum magnets. The assumption that all
spectral weight resides in a dispersive “triplon,” combined
with the first-moment sum rule, leads to the following ex-
pression for S�q ,���:

S�q,��� = −
1

3

���� − Eq�
Eq

�
d

�d�1 − cos�q · d�� , �2�

where Eq is the triplon dispersion relation and �d
=Jd�S0 ·Sd� are the so-called bond energies, which sum to the
ground-state energy for T=0. The summation is over spin
pairs with finite exchange interactions. For Hamiltonian �1�,
in each unit cell there is one J� rung spin-pair term, two J�

terms, one JF term, one interladder J� term, and one interlad-
der J� term, as shown in Fig. 1�a�. The dispersion relation,
Eq, is a function of J�, �=J� /J�, �=JF /J�, and �=Jint

eff /J�.
The neutron scattering intensity is obtained by multiplying
S�q ,��� by the square of the Cu2+ magnetic form factor30

and convoluting the result with the instrumental resolution.
The raw data binning results in an effective wave-vector

resolution approximatively equal to the pixel size. The en-
ergy resolution was wider than the pixel size, and it is de-
scribed by a Gaussian, with the width depending on the con-
figuration of the instrument and on the incident and scattered
neutron energies. All subsequent analysis focuses on scatter-
ing data in the 0.7–1.7 meV energy range. Global fits to the
subtracted 25 K background were performed with all three
sample orientations simultaneously. Any residual background
was treated as momentum and energy independent. To gen-
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FIG. 2. �Color online� False color image of raw �i=5 Å neutron
scattering data measured with c� �ki. Intensity is integrated in the l
direction. �a� T=1.4. �b� 25 K, used as background. �c� Intensity at
T=1.4 K after background subtraction. For presentation purposes
only, the data in �c� were smoothed as described in the text �see Sec.
III B�.
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FIG. 3. �Color online� Trajectories in �h ,0 , l� plane for the three
sample orientations measured at ��=0.8 and 1.5 meV, with �i
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erate false color images of the treated data for Fig. 2 �and
Figs. 6 and 7, which will appear subsequently�, a three-
dimensional �3D� Gaussian smoothing was used with full
widths at half maximum of 0.03 meV and 0.03 r.l.u. along
the h and l directions.

1. Triplon dispersion

To quantify the magnetic interactions in BPCB, Eq. �1�,
we examine the triplon dispersion relation. Figure 2 suggests
that a lowest order approximation to the dispersion is a pe-
riodic lattice sinusoidal function of the form

Eq = � +
W

2
�1 + cos�2�h�� + Ac� cos�2�l� , �3�

where � denotes the gap in the absence of interladder dis-
persion, W is the intraladder bandwidth, and Ac� is the am-
plitude of dispersion along c�, resulting from Jint

eff. We found
that this last term is zero, within experimental uncertainty,
but a more detailed analysis will be employed later to estab-
lish an experimental limit. The global fit �Fig. 7�f�� yields a
bandwidth W= �0.62�0.03� meV, and a spin gap �
= �0.85�0.01� meV. The latter value can be compared with
�=0.82 meV, obtained from magnetization measurements22

on a hydrogenous powder sample, where Hc1=6.6 T and
�g�=2.13. The structure factor indicates that the �� bond
energy is dominant. The next step toward a spin Hamiltonian
for BPCB is to relate the phenomenological parameters char-
acterizing the dispersion relation to exchange constants.

For a strictly one-dimensional model �J� ,J�=0�, we can
use perturbative expressions for the dispersion relation to
extract exchange constants from the data. Contributions to
dispersion from JF and JF� cannot be distinguished when
both are small, so we define JF= �JF+JF�� /2. When both �
=J� /J� and �=JF /J� are present, the model is a ladder with
frustrating diagonal exchange, or equivalently, an alternating
spin chain with next nearest-neighbor exchange. In either
case, the dispersion is given by31

E�h�
J�

= �
m=0

�

am��,��cos�2�mh� �4�

with

a0 = 1 − �21 + �

4
+

3

8

� −

�

2
�2
2 + � −

�

2
� + ¯

a1 = � −
�

2
− �21 + �

4
−

� −

�

2
�3

4
+ ¯

a2 = −
1

4

� −

�

2
�2
1 + � +

�

2
� + ¯ �5�

To account for interladder exchange, in the first approxi-
mation, we add � cos�2�l� to Eq. �4�. For stronger coupling,
or different interladder exchange paths,32 one expects more
complicated l dependence, and possible cross terms involv-
ing both h and l dependence.33 In the absence of J� ex-

change, �=J� /J�. If J� is present and frustrates J�, �
=Jint

eff /J�= �J�−J�� /J�. In principle there should also be a q
independent term associated with Jint

eff. This effect is, how-
ever, sufficiently small to be neglected.

With J� dominant, there are two limiting cases: J� =0 or
JF=0. When J� =0, the system is an alternating spin chain,
with dispersion controlled by �=JF /J�.34 From the a1 term,
we note that BPCB can be described only by a negative �, so
JF would have to be ferromagnetic, corresponding to a FM/
AFM alternating spin chain. However, calculations show that
one cannot achieve the experimental bandwidth over band-
gap ratio, W /�=0.73, in the small � limit where Eq. �5� is
valid. In addition, a strong ferromagnetic interaction is in-
compatible with magnetization measurements.

A contour map of the W /� ratio as a function of � and �
is shown in Fig. 4. The dashed line corresponds to all �� ,��
pairs that are consistent with W /�=0.73. For all points on
this line, with ����0.5, a0 varies by less than 3%. Hence,
any set of �� ,�� on this line accurately describes the ob-
served dispersion relation, with the value of J� within 3% of
1.09 meV. An additional constraint is therefore required to
uniquely determine �� ,��. This is provided by previous mea-
surements of the upper critical field Hc2.22,35–39 For a spin
ladder with frustrating diagonal exchange, the upper critical
field is

g�BHc2 = J� + 2J� , �6�

where Hc2 is independent of JF, if JF
J� and JF
2J�.40

Figure 5 shows Hc2 versus JF /J� for values �� ,�� along the
dashed line in Fig. 4. The values found experimentally vary
between 13.8 �Ref. 36� and 14.6 T �Ref. 22�, as indicated by
dashed lines in the figure and in the insert. From this analy-
sis, we conclude that �JF /J���0.05 or �JF /kB��0.4 K. As
an alternative method, we included the values of the upper
critical field as a constraint in the fit to neutron scattering
data and this yields �=JF /J�=−0.02�0.10. These results
are consistent with the upper limit reported by Watson et
al.,22 based on magnetization measurements performed at
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FIG. 4. �Color online� Bandwidth over band-gap �W /�� ratio
for spin excitations versus normalized intraladder exchange interac-
tions, computed using Eqs. �4� and �5�. The experimental result of
W /�=0.73 for BPCB constrains intraladder exchange interactions
to lie on the dashed line.
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700 mK. On the basis of this tight limit, the frustrating ex-
change and the corresponding bond energy were neglected in
the subsequent analysis of scattering data.

When JF is neglected, Eq. �5� describes the dispersion for
an ideal ladder.13,34 A global fit to the scattering data yields
J�= �1.09�0.01� meV, J� = �0.296�0.005� meV, and �
= �0.002�0.006�. The quoted error bars reflect systematic
error estimated as 10% of the energy resolution. The statis-
tical errors reported by the fitting routine were a factor of
2–3 smaller.

The fitted q and E dependent intensity calculated for this
model is shown in Fig. 6�b�. A portion of the data, together
with the fit, is presented as several constant energy cuts in
Figs. 6�c�–6�e�. The values for J� and J� are in excellent
agreement with the values obtained from neutron
scattering,32,39 magnetization,22 NMR,36 magneto-
striction,35,37 and specific heat and magnetocaloric effect38

measurements. We note that data has been fitted to an expres-
sion valid to third order of � and �, Eqs. �4� and �5�. In
principle, much higher order expressions can be obtained
using other methods, including a particle conserving continu-
ous unitary transformation �CUT� �Refs. 41–43� and linked-
cluster-expansion methods.44–46 Given the small values of �
and �, including higher order terms in the fitted dispersion is
unnecessary for BPCB.

2. Exchange bond energies

Within the single-mode approximation, Eq. �2�, the ex-
change bond energies, �d=Jd�S0 ·Sd�, modulate the neutron
scattering intensity periodically in q ·d. A simulation of the
intensity pattern, considering each possible exchange path in
isolation, is shown in Fig. 7, where each row corresponds to
a different sample orientation. The observed h dependence of
the intensity �column �a�� closely resembles that associated
with the J� bond �column �b��. The J� term yields a periodic
modulation of intensity that is dissimilar to the data, and all
other terms have intensity minima where the data has
maxima.

The fit to Eq. �2� �see results in Table I� yields an unrea-
sonably large bond energy for the interladder dimer consid-

ering the weak interactions. A possible explanation is that it
is not appropriate to use an isotropic spin only form factor
for the Cu2+ ion.30 Hubbard and Marshall showed that cova-
lent bonds strongly affect neutron scattering intensities and
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FIG. 7. �Color online� False color images of neutron scattering
intensity for three sample orientations �rows�: �column �a��
smoothed �see text�, background-subtracted data; �columns �b�–�e��
simulations with the phenomenological dispersion relation, Eq. �3�,
but only one bond energy �see top� modulating the intensity for
each column; �column �f�� fit including all bond energies. For each
sample orientation, select sections of data with unique values of h
and l are shown. The color scale is the same one used in Fig. 2�c�.
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magnetic form factors.47 For the particular case of CuBr4
2−

anion,48 EPR found,49 and calculations confirmed,50 that the
electron density is significantly shifted from the copper d
orbitals into the � ligand orbitals. In the absence of a calcu-
lated magnetic form factor for BPCB similar to the one for
cuprate spin chains,51 we chose to modify the Cu2+ ionic
form factor by isotropically rescaling its q dependence by a
factor r to account for the spin density transfer to bromine.

The global fit �Table I�, shown in Fig. 7 �column �f��,
yields �� /��= �0.05�0.02�, �F /��= �0.02�0.03�, and
�J�,J� /��= ��0.07�0.15�. A fit using the bond energies of
both diagonal exchanges is not a significant improvement
compared to these results, and the bond-energy ratios pre-
sented above are essentially unchanged.

Theoretical bond energies were obtained using a particle
conserving CUT.41–43 The CUT is realized perturbatively at
the isolated rung dimer limit. The elementary excitations
conserved after the transformation are triplons.52 The static
correlation functions for perpendicular, parallel, and diagonal
bonds of the two-leg ladder can then be determined from the
ground-state energy per bond, E0�J� ,J� ,JF� /Nbonds, which
we calculated exactly up to order 7 in J� /J� and JF /J�. Note
that we are using the bare series in the following since we
restrict the discussion to small and intermediate values of the
couplings J� and JF. Using the Feynman-Hellman theorem,
one finds for the static dimer correlation function

C� = �S j,1S j,2� =
1

Nbonds,�

�

�J�

�Ĥ� , �7�

with analogous expressions for other bonds.
For comparison to the experimental data, calculations of

�F /�� versus �=JF /J� are presented for various values of
�=J� /J� in Fig. 8 �black solid lines�. The experimental re-
sult �F /�� is shown as a red line in Fig. 8, with the dashed
lines indicating uncertainty. This measurement does not im-
pose additional constraints on JF.

For an ideal ladder, without frustrating or interladder in-
teractions, the leg to rung bond-energy ratio versus �, com-
puted by CUTs, is shown in Fig. 9. The bond-energy ratio
extracted from the neutron scattering data is shown with
dashed lines. Given the rough nature of our approximation to
the covalent form factor, the level of agreement is accept-
able.

3. Interladder exchange

The fit used in the previous section finds that Jint
eff is at least

two orders of magnitude smaller than J� and J�. To evaluate
the robustness of this finding and obtain a quantitative un-
certainty limit on �, the fit was repeated for several different
fixed values of �. The resulting values for the reduced �2 are
plotted versus � in Fig. 10. A quadratic fit close to �=0,
yields �=0.002�0.006, and this analysis indicates at least
two orders of magnitude difference between Jint

eff and J�. Note
that this result is specific to the assumed nature of interladder
dispersion.33

TABLE I. Fit results with an ionic magnetic form factor and
with a modified form factor that accounts for covalency effects. For
comparison, we show results from other neutron scattering
experiments

Ionic form
factor

Covalent form
factor Other results

J� �meV� 1.09�0.01 1.09�0.01 1.13�0.01 a

J� /J� 0.288�0.057 0.272�0.002 0.252�0.038 a

JF /J� −0.02�0.10 −0.02�0.10

Jint
eff /J� −0.003�0.003 0.002�0.006 0.007b

�� /�� 0.10�0.02 0.05�0.02

�F /�� −0.02�0.04 0.02�0.03

�J�,J� /�� −0.27�0.04 �0.07�0.15

r 1.00�0.00 2.36�0.13

�2 1.303 1.293

aReference 32.
bReference 39.
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FIG. 8. �Color online� Solid black lines show bond-energy ratios
for JF and J�, as a function of �=JF /J�, for several values of �
=J� /J�, from 0.05 to 0.5, every 0.05, as estimated by the continu-
ous unitary transformation. The experimental value and correspond-
ing errors are shown as horizontal lines.
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FIG. 9. Ratio of leg to rung bond energies versus �=J� /J�, as
calculated using the continuous unitary transformation. Experimen-
tal values are shown as horizontal/vertical solid lines, with error
bars indicated by dashed lines.
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A second, less model-dependent approach, involves gen-
erating constant q cuts �width 0.05 r.l.u.� through the experi-
mental data at different h values for all three sample orien-
tations. The difference between the Gaussian fitted peak
position to such cuts and the strictly one-dimensional disper-
sion relation is plotted as a function of l in Fig. 11. The error
bars in the figure are the positional uncertainties of these
Gaussian fits and should be compared to the energy reso-
lution of the instrument, �E	0.1 meV. For some cuts, no
signal was observed above background, in which case no
point is shown in Fig. 11. There is no apparent systematic
deviation from a zero residual as a function of l, again indi-
cating the absence of magnon dispersion perpendicular to a�.

Low temperature NMR measurements by Klanjšek et al.36

reveal 3D magnetic order for T
100 mK. From this obser-
vation, an average interladder coupling of 	20 mK
�	1.7 �eV� was inferred, and an identical result was found
using neutron diffraction at high magnetic fields.39 These re-
sults considered four nearest neighbors in their mean field
expansion. Therefore, the strength of the total effective inter-
ladder exchange energy is 	80 mK. This value is compa-
rable to the limits on �Jint

eff��70 mK set by our fit.

IV. CONCLUSIONS

We have shown that �C5D12N�2CuBr4 is an excellent re-
alization of two-leg spin-1/2 ladder in the strong coupling
limit. The inferred rung exchange J�= �1.09�0.01� meV
and leg exchange J� = �0.296�0.005� meV are in excellent
agreement with values obtained from other techniques.22,35–37

Using two different methods of analysis, we showed that the
effective interladder exchange Jint

eff is more than two orders of
magnitude smaller than J�. These results confirm the previ-
ous conclusion that BPCB can be classified as a one-
dimensional system. Alone, the neutron data do not provide a
direct measurement of JF. However, in combination with
high field magnetization studies, NMR measurements, and
theoretical calculations of the dispersion relation, the neutron

data sets an upper limit on JF+JF�, which is one order of
magnitude smaller than the rung exchange ���JF+JF�� /J��
�0.1�.

The single-mode approximation provides an excellent ac-
count of the data and the intraladder bond energies extracted
are in agreement with results from continuous unitary trans-
formations within experimental error. The intensity pattern
can be understood only if covalency effects are taken into
account. The experiment elucidates the spin interactions in
BPCB for analysis of recent32 and future high field neutron
scattering experiments.

During preparation of this manuscript, we became aware
of the field dependent measurements of Thielemann et al.32

Our data at zero field confirm their results, adding informa-
tion regarding frustrating interactions and bond energies.
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